166 research outputs found

    Reconstruction of Danio rerio Metabolic Model Accounting for Subcellular Compartmentalisation

    Get PDF
    Plant and microbial metabolic engineering is commonly used in the production of functional foods and quality trait improvement. Computational model-based approaches have been used in this important endeavour. However, to date, fish metabolic models have only been scarcely and partially developed, in marked contrast to their prominent success in metabolic engineering. In this study we present the reconstruction of fully compartmentalised models of the Danio rerio (zebrafish) on a global scale. This reconstruction involves extraction of known biochemical reactions in D. rerio for both primary and secondary metabolism and the implementation of methods for determining subcellular localisation and assignment of enzymes. The reconstructed model (ZebraGEM) is amenable for constraint-based modelling analysis, and accounts for 4,988 genes coding for 2,406 gene-associated reactions and only 418 non-gene-associated reactions. A set of computational validations (i.e., simulations of known metabolic functionalities and experimental data) strongly testifies to the predictive ability of the model. Overall, the reconstructed model is expected to lay down the foundations for computational-based rational design of fish metabolic engineering in aquaculture

    Transcriptional robustness and protein interactions are associated in yeast

    Get PDF
    BackgroundRobustness to insults, both external and internal, is a characteristic feature of life. One level of biological organization for which noise and robustness have been extensively studied is gene expression. Cells have a variety of mechanisms for buffering noise in gene expression, but it is not completely clear what rules govern whether or not a given gene uses such tools to maintain appropriate expression.ResultsHere, we show a general association between the degree to which yeast cells have evolved mechanisms to buffer changes in gene expression and whether they possess protein-protein interactions. We argue that this effect bears an affinity to epistasis, because yeast appears to have evolved regulatory mechanisms such that distant changes in gene copy number for a protein-protein interaction partner gene can alter a gene's expression. This association is not unexpected given recent work linking epistasis and the deleterious effects of changes in gene dosage (i.e., the dosage balance hypothesis). Using gene expression data from artificial aneuploid strains of bakers' yeast, we found that genes coding for proteins that physically interact with other proteins show less expression variation in response to aneuploidy than do other genes. This effect is even more pronounced for genes whose products interact with proteins encoded on aneuploid chromosomes. We further found that genes targeted by transcription factors encoded on aneuploid chromosomes were more likely to change in expression after aneuploidy.ConclusionsWe suggest that these observations can be best understood as resulting from the higher fitness cost of misexpression in epistatic genes and a commensurate greater regulatory control of them

    UniPrime2: a web service providing easier Universal Primer design

    Get PDF
    The UniPrime2 web server is a publicly available online resource which automatically designs large sets of universal primers when given a gene reference ID or Fasta sequence input by a user. UniPrime2 works by automatically retrieving and aligning homologous sequences from GenBank, identifying regions of conservation within the alignment, and generating suitable primers that can be used to amplify variable genomic regions. In essence, UniPrime2 is a suite of publicly available software packages (Blastn, T-Coffee, GramAlign, Primer3), which reduces the laborious process of primer design, by integrating these programs into a single software pipeline. Hence, UniPrime2 differs from previous primer design web services in that all steps are automated, linked, saved and phylogenetically delimited, only requiring a single user-defined gene reference ID or input sequence. We provide an overview of the web service and wet-laboratory validation of the primers generated. The system is freely accessible at: http://uniprime.batlab.eu. UniPrime2 is licenced under a Creative Commons Attribution Noncommercial-Share Alike 3.0 Licence

    New diagnostic SNP molecular markers for the Mytilus species complex

    Get PDF
    The development of diagnostic markers has been a long-standing interest of population geneticists as it allows clarification of taxonomic uncertainties. Historically, there has been much debate on the taxonomic status of species belonging to the Mytilus species complex (M. edulis, M. galloprovincialis and M. trossulus), and whether they are discrete species. We analysed reference pure specimens of M. edulis, M. galloprovincialis and M. trossulus, using Restriction site associated DNA (RAD) sequencing and identified over 6,000 SNP markers separating the three species unambiguously. We developed a panel of diagnostic SNP markers for the genotyping of Mytilus species complex as well as the identification of hybrids and interspecies introgression events in Mytilus species. We validated a panel of twelve diagnostic SNP markers which can be used for species genotyping. Being able to accurately identify species and hybrids within the Mytilus species complex is important for the selective mussel stock management, the exclusion of invasive species, basic physiology and bio-diversity studies

    Subcellular localization and function study of a secreted phospholipase C from Nocardia seriolae

    Get PDF
    Fish nocardiosis is a chronic systemic granulomatous disease, andNocardia seriolaeis the main pathogen that causes this disease. But the pathogenesis and virulence factors ofN. seriolaeare not fully understood. A phospholipase C (PLC), which was likely to be a secreted protein targeting host cell mitochondria, was found by the bioinformatics analysis on the whole genome sequence ofN. seriolae. In order to determine the subcellular localization and study the preliminary function of PLC fromN. seriolae(NsPLC), the gene cloning, secreted protein identification, subcellular localization in host cells and apoptosis detection of NsPLC were carried out in this study. The results showed that NsPLC was a secreted protein by mass spectrometry analysis of extracellular products fromN. seriolae. Subcellular localization of NsPLC-GFP fusion protein in FHM cells revealed that the green fluorescence exhibited a punctate distribution near the nucleus and did not co-localize with mitochondria. In addition, apoptosis assay suggested that apoptosis was induced in FHM cells by the overexpression of NsPLC. This study may lay the foundation for further study on the function of NsPLC and promote the understanding of the virulence factors and pathogenic mechanism ofN. seriolae

    Transcriptomic Analysis of Marine Gastropod Hemifusus tuba Provides Novel Insights into Conotoxin Genes

    Get PDF
    The marine gastropod Hemifusus tuba is served as a luxury food in Asian countries and used in traditional Chinese medicine to treat lumbago and deafness. The lack of genomic data on H. tuba is a barrier to aquaculture development and functional characteristics of potential bioactive molecules are poorly understood. In the present study, we used high-throughput sequencing technologies to generate the first transcriptomic database of H. tuba. A total of 41 unique conopeptides were retrieved from 44 unigenes, containing 6-cysteine frameworks belonging to four superfamilies. Duplication of mature regions and alternative splicing were also found in some of the conopeptides, and the de novo assembly identified a total of 76,306 transcripts with an average length of 824.6 nt, of which including 75,620 (99.1%) were annotated. In addition, simple sequence repeats (SSRs) detection identified 14,000 unigenes containing 20,735 SSRs, among which, 23 polymorphic SSRs were screened. Thirteen of these markers could be amplified in Hemifusus ternatanus and seven in Rapana venosa. This study provides reports of conopeptide genes in Buccinidae for the first time as well as genomic resources for further drug development, gene discovery and population resource studies of this species

    DNA polymorphism underlying allozyme variation at a malic enzyme locus (mMEP-2*) in Atlantic salmon (Salmo salar L.)

    Get PDF
    A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in Atlantic salmon (\textit{Salmo salar} L.). The resultant amino acid substitution, which alters the charge of the allelic products, matches the differential mobility of the two allozyme alleles, while allozyme and SNP assays revealed genotyping concordance in 257 of 258 individuals. A single mismatch, homozygous allozyme vs heterozygote SNP, suggests the presence of a second, less common null allele

    Bacterial Communities of Ballan Wrasse (Labrus bergylta) Eggs at a Commercial Marine Hatchery

    Get PDF
    Ballan wrasse (Labrus bergylta, Ascanius 1767) are cleaner fish cultured in northern Europe to remove sea lice from farmed Atlantic salmon (Salmo salar, Linnaeus 1758). Despite increasing appreciation for the importance of the microbiota on the phenotypes of vertebrates including teleosts, the microbiota of wrasse eggs has yet to be described. Therefore, the aim of this present study was to describe the bacterial component of the microbiota of ballan wrasse eggs shortly after spawning and at 5 days, once the eggs had undergone a routine incubation protocol that included surface disinfection steps in a common holding tank. Triplicate egg samples were collected from each of three spawning tanks and analysis of 16S rRNA gene sequences revealed that 88.6% of reads could be identified to 186 taxonomic families. At Day 0, reads corresponding to members of the Vibrionaceae, Colwelliaceae and Rubritaleaceae families were detected at greatest relative abundances. Bacterial communities of eggs varied more greatly between tanks than between samples deriving from the same tank. At Day 5, there was a consistent reduction in 16S rRNA gene sequence richness across the tanks. Even though the eggs from the different tanks were incubated in a common holding tank, the bacterial communities of the eggs from the different tanks had diverged to become increasingly dissimilar. This suggests that the disinfection and incubation exerted differential effects of the microbiota of the eggs from each tank and that the influence of the tank water on the composition of the egg microbiota was lower than expected. This first comprehensive description of the ballan wrasse egg bacterial community is an initial step to understand the role and function of the microbiota on the phenotype of this fish. In future, mass DNA sequencing methods may be applied in hatcheries to screen for pathogens and as a tool to assess the health status of eggs

    Essential Genes of Vibrio anguillarum and Other Vibrio spp. Guide the Development of New Drugs and Vaccines

    Get PDF
    Essential genes in bacterial pathogens are potential drug targets and vaccine candidates because disrupting their function is lethal. The development of new antibiotics, in addition to effective prevention measures such as vaccination, contributes to addressing the global problem of bacterial antibiotic resistance. The aim of this present study was to determine the essential genes of Vibrio anguillarum, a bacterial pathogen of aquatic animals, as a means to identify putative targets for novel drugs and to assist the prioritisation of potential vaccine candidates. Essential genes were characterised by a Tn-seq approach using the TnSC189 mariner transposon to construct a library of 52,662 insertion mutants. In total, 329 essential genes were identified, with 34.7% found within the core genome of this species; each of these genes represents a strong potential drug target. Seven essential gene products were predicted to reside in the cell membrane or be released extracellularly, thus serving as putative vaccine candidates. Comparison to essential gene data from five other studies of Vibrio species revealed 13 proteins to be conserved across the studies, while 25 genes were specific to V. anguillarum and not found to be essential in the other Vibrio spp. This study provides new information on the essential genes of Vibrio species and the methodology may be applied to other pathogens to guide the development of new drugs and vaccines, which will assist efforts to counter antibiotic resistance

    Mapping and Validation of the Major Sex-Determining Region in Nile Tilapia (Oreochromis niloticus L.) Using RAD Sequencing

    Get PDF
    Sex in Oreochromis niloticus (Nile tilapia) is principally determined by an XX/XY locus but other genetic and environmental factors also influence sex ratio. Restriction Associated DNA (RAD) sequencing was used in two families derived from crossing XY males with females from an isogenic clonal line, in order to identify Single Nucleotide Polymorphisms (SNPs) and map the sex-determining region(s). We constructed a linkage map with 3,802 SNPs, which corresponded to 3,280 informative markers, and identified a major sex-determining region on linkage group 1, explaining nearly 96% of the phenotypic variance. This sex-determining region was mapped in a 2 cM interval, corresponding to approximately 1.2 Mb in the O. niloticus draft genome. In order to validate this, a diverse family (4 families; 96 individuals in total) and population (40 broodstock individuals) test panel were genotyped for five of the SNPs showing the highest association with phenotypic sex. From the expanded data set, SNPs Oni23063 and Oni28137 showed the highest association, which persisted both in the case of family and population data. Across the entire dataset all females were found to be homozygous for these two SNPs. Males were heterozygous, with the exception of five individuals in the population and two in the family dataset. These fish possessed the homozygous genotype expected of females. Progeny sex ratios (over 95% females) from two of the males with the "female" genotype indicated that they were neomales (XX males). Sex reversal induced by elevated temperature during sexual differentiation also resulted in phenotypic males with the "female" genotype. This study narrows down the region containing the main sex-determining locus, and provides genetic markers tightly linked to this locus, with an association that persisted across the population. These markers will be of use in refining the production of genetically male O. niloticus for aquaculture
    corecore